M1.(a) (i) giant lattice
allow each carbon atom is joined to three others
atoms in graphene are covalently bonded max. 2 marks if any reference to wrong type of bonding
and covalent bonds are strong or need a lot of energy to be broken allow difficult to break
(ii) because graphene has delocalised electrons
allow each carbon atom has one free electron
which can move throughout the structure
do not accept just electrons can move.
(b) because there are weak forces between molecules
allow no bonds between the layers
so layers / molecules can slip / slide.

M2.(a) because atoms / ions / particles in alloy are different (sizes)
do not allow reference to molecules ignore reference to compounds
so layers distorted
(and layers / atoms / ions / particles) don't slide or slide less easily accept all marking points in a suitably labelled or annotated diagram
if no other mark awarded accept an alloy is a mixture or contains different metals / elements for 1 mark
(b) giant structure or lattice or macromolecule max 3 marks if incorrect bonding
strong bonds (between carbon / atoms)
covalent (bonds)
each carbon / atom forms 4 bonds
accept tetrahedral
if no other marks awarded, allow carbon (atoms) for 1 mark
(c) reference to incorrect bonding = max 3
covalent bonds' = max 2

## Page 3

marking points eg. (tangled) lines with no cross-links chains or large molecules ignore layers
with intermolecular forces or forces between chains allow bonds for forces accept no cross-links
that are weak
must relate to $2{ }^{\text {nd }}$ marking point
and are easily overcome/ broken (when heated) accept molecules / chains can flow / move

M3. (a) (i) ionic / molecules / metallic / (inter)molecular = max 2
because graphene / it has a giant structure / lattice / macromolecular accept all / every / each atom is bonded to 3 other atoms
because graphene / it has covalent bonds / is covalent
because in graphene / the bonds are strong or a lot of energy needed / hard to break the bonds
(ii) there are delocalised / free electrons
because one (delocalised / free) electron per atom linked to first marking point accept because three electrons per atom used (in bonding) accept because one electron per atom not used (in bonding)
(b) opaque (owtte)
eg could not see through them
or layers slide
or layers not aligned ignore thick

M4. (a) Graphite:
because the layers (of carbon atoms) in graphite can move / slide it = graphite
this is because there are only weak intermolecular forces or weak forces between layers accept Van der Waals' forces allow no covalent bonds between layers

## Diamond:

however, in diamond, each carbon atom is (strongly / covalently) bonded to 4 others allow diamond has three dimensional / tetrahedral structure
so no carbon / atoms able to move / slide allow so no layers to slide or so diamond is rigid
(b) because graphite has delocalised electrons / sea of electrons allow free / mobile / roaming electrons
which can carry charge / current or move through the structure
however, diamond has no delocalised electrons accept however, diamond has all (outer) electrons used in bonding

M5. any three from:
any reference to incorrect bonding $=\max 2$

- giant structure / lattice / macromolecule
- covalent (bonds)
- bonds are (very) strong
allow bonds difficult to break
or takes a lot of energy to break bonds
- each atom / carbon joined to four others accept each atom / carbon forms four bonds

M6. (a) any four from:
max 3 marks if any reference made to covalent / ionic bonding / molecules or intermolecular forces or graphite / diamond or forces of attraction between electrons and then ignore throughout

- giant structure / lattice ignore layers
- positive ions
- sea of electrons or delocalised / free electrons ignore electrons can move
- awareness of outer shell / highest energy level electrons are involved
- (electrostatic) attractions / bonds between electrons and positive ions
- bonds / attractions (between atoms/ions) are strong allow hard to break for strong ignore forces unqualified
- a lot of energy / heat is needed to break these bonds / attractions ignore high temperature
(b) (i) that they are very small
accept tiny / really small / a lot smaller / any indication of very small eg microscopic, smaller than the eye can see
or
1-100 nanometres or a few (hundred) atoms ignore incorrect numerical values if very small is given
(ii) any $\mathbf{2}$ from:
- one (non-bonded) electron from each atom
- delocalised / free electrons allow sea of electrons ignore electrons can move
- electron carry / form / pass current / charge ignore carry electricity

M7. five ideas from the following for one mark each

- each carbon / atom joined / bonded to three other carbon / atoms or each carbon forms 3 bonds
- in layers
- only weak forces (of attraction) / bonds between layers allow weak electrostatic / intermolecular forces /bonds between layers
- layers / atoms can slide over each other
- one electron on each carbon is not used for bonding
- electrons delocalised or electrons free
allow 'sea' of electrons
- electrons carry the charge / current
- giant structure / lattice
- covalent (bonds)
- strong bonds or a lot of energy needed to break bonds
reference to ionic bonding $=\max 4$
diagrams could be used:
- to show layered structure
- to show that each carbon is bonded to three other carbon atoms
- to show giant structure (at least 3 rings required)

